Title: an Object Oriented Shared Data Model for Gis and Distributed Hydrologic Models

نویسندگان

  • Mukesh Kumar
  • Christopher J. Duffy
چکیده

Distributed physical models for the space-time distribution of water, energy, vegetation, and mass flow require new strategies for data representation, model domain decomposition, a-priori parameterization, and visualization. The Geographic Information System (GIS) has been traditionally used to accomplish these data management functionalities in hydrologic applications. However, the interaction between the data management tools and the physical model are often loosely integrated and non-dynamic. This is because a) the data types, semantics, resolutions and formats for the physical model system and the distributed data or parameters may be different, with significant data preprocessing required before they can be shared, b) the management tools may not be accessible or shared by the GIS and physical model c) the individual systems may be operating system dependent or are driven by proprietary data structures. The impediment to seamless data flow between the two software components has the effect of increasing the model setup time and analysis time of model output results, and also makes it restrictive to perform sophisticated numerical modeling procedures (real time forecasting, sensitivity analysis etc.) that utilize extensive GIS data. These limitations can be offset to a large degree by developing an integrated software component that shares data between the (hydrologic) model and the GIS modules. We contend that the pre-requisite for the development of such an integrated software component is a “shared data-model” that is designed using an Object Oriented Strategy. Here we present the design of such a shared data model taking into consideration the data type descriptions, identification of dataclasses, relationships and constraints. The developed data model has been used as a method base for developing a coupled GIS interface to Penn State Integrated Hydrologic Model (PIHM) called PIHMgis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An object-oriented shared data model for GIS and distributed hydrologic models

Distributed physical models for the space-time distribution of water, energy, vegetation, and mass flow require new strategies for data representation, model domain decomposition, a-priori parameterization, and visualization. The Geographic Information System (GIS) has been traditionally used to accomplish these data management functionalities in hydrologic applications. However, the interactio...

متن کامل

ساختار دهی آنی داده‌‌های مکانی ورودی GIS با تأکید بر عارضه راه

An important issue in implementation of a GIS system is preparation of data to be entered in GIS. To produce spatial data for GIS using photogrammetric techniques, conventional method is to apply photogrammetric and GIS systems individually (off-line procedure). This approach is costly, time consuming and somehow unreliable due to the fact that 3D photogrammetric model is not available at the ...

متن کامل

Title: an Efficient Domain Decomposition Framework for Accurate Representation of Geodata in Distributed Hydrologic Models

Physically-based, fully-distributed hydrologic models simulate hydrologic state variables in space and time while using information regarding heterogeneity in climate, land use, topography and hydrogeology. Since fine spatio-temporal resolution and increased process dimension will have large data requirements, there is a practical need to strike a balance between descriptive detail and computat...

متن کامل

Bridging the Gap between Geohydrologic Data and Distributed Hydrologic Modeling

This paper outlines and demonstrates a strategy for coupling of integrated hydrologic model and Geographic Information System (GIS) to meet pre/post processing of data and visualization. Physically based fully distributed integrated hydrologic models seek to simulate hydrologic state variables and their interactions in space and time. The process requires interaction with a range of heterogeneo...

متن کامل

A tightly coupled GIS and distributed hydrologic modeling framework

Distributed, physics-based hydrologic models require spatially explicit specification of parameters related to climate, geology, land-cover, soil, and topography. Extracting these parameters from national geodatabases requires intensive data processing. Furthermore, mapping these parameters to model mesh elements necessitates development of data access tools that can handle both spatial and tem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009